Determinants of Environmental Management in the Red Sea Hotels: Personal and Organizational Values and Contextual Variables
Mohammed El Dief and Xavier Font

Journal of Hospitality & Tourism Research published online 15 December 2010
DOI: 10.1177/1096348010388657

The online version of this article can be found at:
http://jht.sagepub.com/content/early/2010/12/15/1096348010388657

Published by:
SAGE
http://www.sagepublications.com

On behalf of:
International Council on Hotel, Restaurant, and Institutional Education

Additional services and information for Journal of Hospitality & Tourism Research can be found at:

Email Alerts: http://jht.sagepub.com/cgi/alerts
Subscriptions: http://jht.sagepub.com/subscriptions
Reprints: http://www.sagepub.com/journalsReprints.nav
Permissions: http://www.sagepub.com/journalsPermissions.nav
DETERMINANTS OF ENVIRONMENTAL MANAGEMENT IN THE RED SEA HOTELS: PERSONAL AND ORGANIZATIONAL VALUES AND CONTEXTUAL VARIABLES

Mohammed El Dief
Helwan University
Xavier Font
Leeds Metropolitan University

What motivates firms to adopt environmental management practices is one of the most significant aspects in the contemporary academic debate in which the review of the existing literature yields, with an obvious contextual bias toward developed world, contested theories and inconclusive findings. Providing a unique model that brings together the individual and organizational levels of analysis on firms’ adoption of environmental management practices, this study aims to provide a new insight from the context of developing world. Data from 158 Red Sea hotels reveal two identifiable dimensions of environmental management—planning and organization, and operations—that can be explained as originating from different values. Whereas organizational altruism is a powerful predictor of both dimensions, managers’ personal values and organizational competitive orientation are only relevant to environmental operations. The evidence also indicates that contextual variables such as chain affiliation, hotel star rating, and size are important to explain hotels’ environmental management behaviors.

KEYWORDS: hotel management; lodging operations; ethics

What makes some hotels more environmentally proactive than others? We explain this through a conceptual model test with Red Sea hotels. The study first outlines a range of environmental management practices (EMPs), broken down into organizational and operational, which the literature has reported widely since the early 1990s, as a way of introducing the challenge facing many academics and donors of how to explain the reasons why some firms choose to adopt them, whereas many others do not. It then introduces three theories to explain the behavior of firms toward environmental engagement, going beyond the coarse early assumptions that cost cuttings would be the single measure to provide a business case that firms would respond to.
Environmental Management Practices

Environmental management is a broad term, covering a wide range of practices aimed at reducing the negative environmental impacts generated by a firm’s products and services. These practices can be generally classified into two categories: “organizational or software” and “operational or hardware” (Alvarez Gil, Burgos Jimenez, & Céspedes Lorente, 2001; González-Benito & González-Benito, 2006; Saha & Darnton, 2005).

Organizational practices are relevant to the development and implementation of an environmental management system (EMS); a system that helps companies identify and manage environmental issues and consequences related to their operations in a holistic and consistent way (International Hotel & Restaurant Association [IH&RA], United Nations Environment Programme [UNEP], & EUHOFA, 2001). The enforcement of environmental regulations is a highly complex issue for the hotel sector and particularly in developing countries, which is highly fragmented and mainly made up of small- to medium-sized independent operators (Kasim & Scarlat, 2007; Rivera, 2002). For this reason, EMSs have been recognized as viable voluntary mechanisms of managing the various environmental issues associated with hotel operations that do not typically fall under the control of any one monitoring agency (World Travel and Tourism Council, International Hotel and Restaurant Association, International Federation of Tour Operators, International Council of Cruise Lines, & UNEP, 2002).

EMSs originate in manufacturing with international and European environmental standards arising as extensions of quality management procedures (Font & Buckley, 2001) from which tourism specific adaptations have taken place (Green Globe 21 during the 1990s being the most obvious). They reflect the extent to which a company has modified its systems and structures to accommodate an environmental program, which defines an environmental policy, establishes environmental objectives and targets, evaluates the firm’s environmental performance in a regular basis, delegates environmental responsibilities and provides environmental training for employees. Such practices themselves do not directly lessen the company’s environmental impact, but they set the mechanism to improve environmental performance in a systematized and structured manner (González-Benito & González-Benito, 2006).

Unlike organizational practices, operational practices can directly improve the environmental performance of the company since they involve modifications in both the production and operations systems. Whereas organizational practices are similar across industries, operational practices are industry specific (Alvarez Gil et al., 2001; Carmona-Moreno, Céspedes-Lorente, & De Burgos-Jimenez, 2004). Academics suggest that cutting operating costs and minimizing resource consumption is the most convincing strategy to engage hotel management (see Ayuso, 2006; Bohdanowicz, 2006; Kasim, 2007; Kirk, 1995; Tzschentke, Kirk, & Lynch, 2004). Opportunities for cutting operational costs revolve around four areas: water and wastewater management, energy management, solid waste reduction and management, and green purchasing (IH&RA, UNEP, and EUHOFA, 2001). Water accounts for a substantial share of total utility bills in most hotels,
and nearly all of it is released as sewage, often without proper treatment (UNEP DTIE, IH&RA, & EUHOFA, 2005). Therefore, water management is becoming increasingly important for hoteliers as it can reduce not only the total cost of actual water consumption but also the cost of wastewater treatment. For example, Sandals Negril Beach Resort & Spa in Jamaica uses low-flush toilets and urinals that use only 5.7 liters (1.5 gallons) of water per flush, aerators and low-flow devices on taps, water-saving showerheads with a maximum flow of 9.5 liters (2.5 gallons) per minute, and ground care water-saving techniques to reduce water loss from evaporation. In the 3 years from 1998 to 2000, the hotel was able to reduce total water consumption per night by 28.6% (Sweeting & Sweeting, 2003).

Energy savings equate to cost savings. Energy efficient equipment and practices reduce hotel energy consumption by 20% or more (Ontario Restaurant, Hotel and Motel Association, 2008). Many hotel corporations recognize these opportunities and implement energy-efficient projects in lighting, space heating, and cooling systems. For example, the 2001 Energy Star® Award winner Hilton Hotels Corporation was able to save nearly US$2.5 million in energy costs. This was achieved by saving of nearly 43 million kWh of electricity and the prevention of 65 million pounds of CO₂ emissions in 2000 alone, the equivalent of removing 6,450 cars from the road (http://www.energystar.gov).

Waste disposal costs money. Most hotels pay twice for the waste they generate—first for product packaging (up to 35% of total waste by volume and 15% by weight can be packaging) and then for waste disposal. Costs are rising rapidly for waste collection, hauling and tipping fees (Cummings, 1997). Hotels are well-placed to establish recycling facilities that can be used by others in the local community. The Park Inn Hotel Berlin (formerly the Forum Hotel), for example, not only handles its own waste but also that of eight other tenants in the building, including cafes and fast food outlets, for a charge based on the quantity. The hotel cut its own waste from a total of 840 tones in 1992 to 85 in 1998.

Product procurement policies can also affect the levels of waste a hotel generates, and hence the costs associated through waste disposal. As major consumers of goods and services, hotels have strong influence on the supply chain and can, therefore, encourage suppliers to follow environmentally friendly standards. Thus, establishing a supply environmental management process is a necessity for those hotels opting to improve their environmental performance (Da Cunha Lemos & Giacomucci, 2002). Scandic hotels provide a unique example. The company decided to involve their supplier in its environmental program, driving them to source products with low environmental impact. New suppliers were asked to document their environmental policies and to sign the Scandic Supplier Declaration. In many cases, Scandic was able to influence suppliers’ environmental behavior. To reduce their environmental impacts, all hotels are encouraged to offer KRAV-certified breakfasts (Bohdanowicz, Simanic, & Martinac, 2004).

Despite the growing popularity of EMPs in the hotel industry, the nature and extent of such practices is, however, unknown in the Red Sea hotel sector.
is a need for background information on EMPs, and more important, on the factors influencing their adoption. Such background will help practitioners and policymakers design and develop appropriate programs aimed at maintaining and/or improving the environmental quality of the region and thereby making the industry more internationally competitive.

Factors Influencing the Adoption of EMPs

Despite research attempts devoted to theory building with regards to the factors influencing firms’ environmental behaviors (e.g., Alvarez Gil et al., 2001; Andersson & Bateman, 2000; Henriques & Sadorsky, 1996, 1999; Hoffman, 1999; Moon & de Leon, 2007; Rivera, 2002, 2004; Sharma, 2000) to date theories are contested and empirical findings are inconclusive. Traditionally, one theoretical approach or a single level of analysis has been used to explain firms’ adoption of EMPs, providing an incomplete picture. Interaction between multiple theoretical perspectives and various levels of analyses is, however, argued to be essential to provide a better explanation of such a complex phenomenon (Bansal & Roth, 2000). Although multiple studies had addressed this issue in manufacturing, few examine tourism businesses (see, however, Bohdanowicz, 2006, Chan & Wong, 2006). This study seeks, therefore, to contribute to the existing literature by developing a multilevel theoretical framework to explore determinants of EMPs in hotels, operating at the individual and organizational levels drawing on theories from psychology, sociology, organizational studies and ethics.

The analysis starts at the individual-level arguing that EMPs are not only driven by organizational-level determinants but also they may be outcomes of managers’ environmental paradigms or belief systems. This is consistent with theories that emphasized the importance of organizational actors holding eco-centric values to be able to help their companies in the move toward sustainability (e.g., Gladwin, Kennely, & Krause, 1995; Shrivastava, 1995a, Stead & Stead, 1992; Starik & Rands, 1995). Empirical research has shown also that eco-oriented managers may play a role in corporate greening, although more empirical analyses are still needed in this area. Andersson and Bateman (2000), for example, have demonstrated the critical role that a “strong environmental paradigm” plays in a firm’s decision to adopt EMPs. Applying the Ajzen theory of planned behavior, Cordano and Frieze (2000) and Flannery and May (2000) have also identified managers’ attitudes as an important antecedent to preferences for source reduction activity. In this light, hotel businesses are expected to vary in terms of their level of environmental commitment according to how strongly their executives embrace ecocentric values inherent in their beliefs systems.

At the organizational level, the framework explores the role of organizational value orientations. Understanding the prevailing environmental values embedded in a hotel’s environmental paradigm can provide important insights for the development of EMPs (Banerjee, Iyer, & Kashyap, 2003, Bansal, 2003; Berkhout & Rowlands, 2007). A distinction here is made between three potential orientations of environmental responsibility in business: competitiveness, legitimacy,
and altruism. Academics supporting resource-based theory justify the adoption of proactive EMPs as a firm’s desire to maximize returns and obtain competitive advantages (e.g., Hart, 1995; Hart & Ahuja, 1996; Miles & Covin, 2000; Porter & van der Linde, 1995; Sharma & Vredenburg, 1998; Shrivastava, 1995b; Russo & Fouts, 1997), through cost reduction, sales increases, new market opportunities, and enhanced company image. Competitiveness may thus be helpful in explaining part of EMPs in the sampled hotels.

An alternative approach to understand the determinants of EMPs is legitimacy. From the perspectives of institutional and stakeholder theories, firms implement EMPs to comply with regulations and broadly accepted norms and values in the society in which they operate and thus remain legitimate in the eyes of their constituencies (Bansal & Roth, 2000; Fineman & Clarke, 1996; Henriques & Sadorsky, 1999; Hoffman, 1999; Madsen & Ulhoi, 2001; Salmi, 2008). The company that fails to conform to these regulations or norms runs the risk of losing its “license to operate” (Howard-Grenville, Jennifer Nash, & Coglianese, 2008).

Finally, altruism stems from the argument that some firms reduce environmental impacts because they see this as “the right thing to do” (Bansal & Roth, 2000; Berkhout & Rowlands, 2007; Drumwright, 1994). Some business and society scholars have argued that firms have a responsibility toward society that goes well beyond simply maximizing the wealth of shareholders (significant examples include Carroll, 1995; Frederick, 1994; Swanson, 1999). Previous research has shown that these value dimensions are overlapping (Bansal, 2003; Berkhout & Rowlands, 2007), and thus they are discussed separately here for analytical purposes only.

We have previously adopted this framework to explore determinates of environmental responsibility in marketing behaviors of the management companies operating in the Red Sea (El Dief & Font, 2010). The replication of the analysis on another sample of the industry’s executives, with different responsibilities here intends to reach a stronger conclusion about the nature of the relationships identified in our previous research using a different unit of analysis, that is, the individual hotel. Independent variables consist of the personal environmental values (PEVs) and organizational environmental values (OEVs), with the dependent variables being the hotel’s EMPs, and personal and contextual variables being included for control purposes. The instrument design is explained below whereas the actual items used are available from the authors for researchers to test in their own locations.

INSTRUMENT DESIGN

PEVs were measured by borrowing 10 items from the New Ecological Paradigm (NEP) Scale developed by Dunlap, Liere, Mertig, and Jones (2000) to measure how strongly the respondents endorse eco-centric values in their belief systems. The NEP is regarded as the benchmark for measuring peoples’ environmental attitudes, beliefs, and values and thus has been widely tested in different cultures. Nonetheless, this is one of its first applications in an Arabic context.
OEVs were measured with 10 statements covering the 3 distinctive orientations previously mentioned as the study’s framework: altruism, competitiveness, and legitimacy, using a 5-point Likert-type scale. These statements are based on previous organizational greening literature (e.g., Banerjee et al., 2003; Bansal & Roth, 2000; Baker & Sinkula, 2005; González-Benito & González-Benito, 2005a, 2005b; Kärnä et al., 2003) and modified to suit the hotel context.

At the time of this study, there was no standard set of EMP for the Red Sea hotels. Accordingly, we used statements related to environmental management already employed in the general organizational greening literature (e.g., Aragón-Correa, 1998; Henriques & Sadowsky, 1999, Sharma, 2000), as well as a number of aspects specifically related to hotels (e.g., Alvarez Gil et al., 2001; Carmona-Moreno et al., 2004; González & León, 2001; Kirk, 1996; IH&RA et al., 1995).

We chose items so as to provide a balanced combination of various aspects of environmental management. Based on the literature, the 12 practices included in this scale were divided into 2 constructs: planning and organizational practices, and operational practices. Hotel chief engineers evaluated each on a 5-point Likert-type scale as a function of the hotel’s degree of commitment to each practice (1 = minimum commitment level and 5 = maximum commitment level).

We also included several control variables aiming to determine the unique contribution of PEV and OEV, describe the participants, and assess generalizability. Demographic variables are as follows: Managers’ age is included the era in which one is brought up is arguably central to shaping environmental values, attitude, and behaviors (Fryxell & Lo, 2003; Rivera & de Leon, 2005). Manager’s industry tenure and education were included as a control variable because of its relevance to corporate strategic change (Wiersema & Bantel, 1993).

Contextual variables are as follows: Chain affiliation measured as a binary variable differentiates between local hotels (both independent and chain hotels) and international chain hotels international chain hotels. The literature suggests that international chain hotels are more likely to implement environmental strategies because of the effects of economies of scale, marketing experience in markets where green differentiation is possible, and the possible transfer of environmental knowledge among affiliates (e.g., Alvarez Gil et al., 2001; Ayuso, 2006; Bohdanowicz, 2006; González & León, 2001).

Hotel size measured as the number of hotel rooms, included to control the effect of scale economies on the implementation of EMPs, the advantages resulting from the superior availability of resources in and the higher visibility of large companies. There is a great deal of empirical evidence supporting the relevance of firm size matters in the environmental debate, with larger firms being more proactive (e.g., Alvarez Gil et al., 2001; Chan, 2005; Claver-Cortes, Molina-Azorín, Pereira-Moliner, & Lopez-Gamero, 2007; González-Benito & González-Benito, 2006; McNamara & Gibson, 2008; Moon & de Leon, 2007; Mori & Welch, 2008).

Star rating formalized as a binary variable distinguishing between five stars and four and three stars together. Similar to size and degree of internationalization,
the higher the grade that the hotel has, the greater the volume of assets and employees per room it has and hence its ability to adopt BER initiatives (Alvarez Gil et al., 2001; Rivera, 2002).

The priority target market was included because the literature suggests that customers, particularly Western European, are more likely to influence companies’ environmental behavior (Ayuso, 2006; El Dief & Font, 2010). We introduced it as a binary variable distinguishing West European tourist and others.

METHOD

The research that forms the basis of this study was conducted in Egypt, a country that shares most of the environmental problems of developing countries (see Anwar, 2003). We choose the Red Sea region as the study setting, as tourism is growing fast, there is a range of international and domestic chains, the number of hotels is large and competition is fierce (Daher, 2007). The region’s hotel room capacity can reflect the industry’s massive growth and the potential negative impact on the natural environment. According to the Egyptian Hotel Association (2007-2008), at the time of the primary research there were 491 hotels operating with almost 109,000 rooms (60% of the country’s total room capacity).

Sample and Data Collection

The target population was individual hotels rather than their management companies because, as González, & León (2001, p. 182) explained, EMPs do not tend be homogeneous across individual units of a hotel chain, and firms act with discretion in expanding such practices across single units. The sample of 3, 4, and 5 star hotels represent 74% of the establishments in the region (Egyptian Hotel Association, 2007-2008) and are relatively homogeneous. Their size and management structure warrant expecting they can manage environmental aspects (as found in Alvarez Gil et al., 2001; Carmona-Moreno et al., 2004; Erdogan & Baris, 2007; Molina-Azorín et al., 2009; Rodriguez & Cruz, 2007). This study targets the entire population (264) in the *Egyptian Hotel Guide* (Egyptian Hotel Association, 2005-2006), using a self-completed questionnaire for the hotel’s chief engineer.

The backgrounds of the targeted and participant hotels are summarized in Table 1.

A pilot study identified chief engineers in Red Sea hotels as the environmental management “reality definers” (Fineman, 1997). Environment management, as understood in these hotels, is usually an additional responsibility for the engineering and maintenance departments.

The survey instrument was tested with in-depth interviews with both Egyptian academics in hospitality and corporate social responsibility and hoteliers. The majority of statements included in the questionnaires were borrowed from contexts other than tourism and applied noticeably to Western societies. Statements validated in those contexts may or may be not appropriate for tourism or for Egyptian managers. It was, therefore, essential to test the applicability of these
items within both the hotel sector and the Egyptian organizational context. The questionnaires were translated from English into Arabic by the researcher and with assistance from an Egyptian academic teaching in a U.K. university, testing meaning accuracy in the translation through double translation English–Arabic–English. The two language versions were compared and simple adjustments were made to the Arabic version. The refined questionnaires were then subjected again to a second stage of pilots with three Egyptian academics and seven target respondents (five chief engineers from the same chain representing hotels of different categories and two marketing directors from two different chains). Some statements were again modified and some were deleted to shorten the questionnaires, based on suggestions from respondents, strengthening the content validity of the study.

From these pilots we learnt that (a) the summer season (May until August) was regarded as the most suitable time for administering the questionnaires, as being the low season in the Red Sea because of the hot weather; (b) data would be collected by a variety of methods to get representative samples for the study population; and (c) data collectors would be needed to help administering the questionnaires. Accordingly, five persons were selected, trained and instructed to deliver and collect the questionnaires in a systematic way.

We surveyed these environmental engineers in three ways, increasing the cost per response at each stage (Roberts, 2007): mail, telephone, and face-to-face, between May and August 2006. The mail survey response rate of 18% was judged to be insufficient but typical (see, e.g., Mostafa, 2007; Parnell & Hatem, 1999; Tuncalp, 1988). Telephone follow-ups increased response rate to 33%. Doorstep follow ups (visiting each property in person to deliver questionnaires

<table>
<thead>
<tr>
<th>Table 1</th>
<th>Frequency Distribution for Participant Hotels</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hotels Background</td>
<td>Participant Hotels, (n (%))</td>
</tr>
<tr>
<td>Star ratings</td>
<td></td>
</tr>
<tr>
<td>3-Star hotels</td>
<td>49 (31)</td>
</tr>
<tr>
<td>4-Star hotels</td>
<td>69 (43.7)</td>
</tr>
<tr>
<td>5-Star hotels</td>
<td>40 (25.3)</td>
</tr>
<tr>
<td>Total</td>
<td>158 (100.0)</td>
</tr>
<tr>
<td>Size</td>
<td></td>
</tr>
<tr>
<td>Small-sized hotels (up to 100 rooms)</td>
<td>19 (12.0)</td>
</tr>
<tr>
<td>Medium-sized hotels (between 100 and 300)</td>
<td>85 (53.8)</td>
</tr>
<tr>
<td>Large-sized hotels (300 rooms or more)</td>
<td>54 (34.2)</td>
</tr>
<tr>
<td>Total</td>
<td>158 (100.0)</td>
</tr>
<tr>
<td>Chain affiliation</td>
<td></td>
</tr>
<tr>
<td>Independent hotels</td>
<td>36 (22.8)</td>
</tr>
<tr>
<td>Local chain hotels</td>
<td>50 (31.6)</td>
</tr>
<tr>
<td>International chain hotels</td>
<td>72 (45.6)</td>
</tr>
<tr>
<td>Total</td>
<td>158 (100.0)</td>
</tr>
</tbody>
</table>
and agree a time to pick them up) proved to be more effective than posted or telephone surveys at persuading would-be respondents to participate, pushing the response rate significantly from to 65.55%. After rejecting 13 poor completions, we had 158 valid responses (60.5%).

We used star ratings (three-, four-, or five-star) and chain affiliation (independent, local chain, or international chain) to check the nonresponse bias. Yet with $\chi^2 = 2.27 (p > .10)$, the proportions of star ratings among nonparticipant and participant hotels were not statistically significant. The chi-square test of the proportions of the hotel chain affiliations between respondent and nonrespondent hotels was a χ^2 of 2.15 and $p > .01$. Thus, nonresponse bias, in terms of star rating and/or chain affiliation, was probably not a problem in this survey. We acknowledge that in surveys of this type there is a high likelihood of PEV bias, which could not be measured with this quantitative study, but was the subject of further qualitative explanatory research to be published shortly. We also acknowledge that the drop off and pick up method would have pressured some hotel staff to respond—however, comparing results between the responses achieved door to door with those by mail and telephone, there were no alarming differences.

ANALYSIS

PEV independent variables were tested through the NEP with principal components analysis and orthogonal varimax rotation. This provided two factors accounting for 54.37% of the total variance explained (see Field, 2005). The first factor labeled Anti–New Ecological Paradigm obtained an eigenvalue of 4.0, explaining 40.04% of the total variance. The agreement with the items loaded on this factor reflects strong anthropocentric beliefs of respondents. The second factor that achieved an eigenvalue of 1.43 before rotation, explaining 14.33% of the variance, was labeled Limits to Growth Paradigm (LGP). The agreement with the two items loaded on this factor indicates pro-NEP beliefs. Both factors exhibited acceptable reliabilities, with α values of .847 and .610, respectively (see Table 2). For ease of interpretation, we calculated the anti-NEP subscale with reverse scoring so that high scores correspond to a pro-NEP subscale that was used in subsequent analyses.

In studying OEVs, the 10 survey statements used were reduced into 3 factors through Principal Components Analysis and reliability (Cronbach’s α; see Table 3). As Table 3 shows, the first factor captures statements about traditional utilitarian business values, whereas the second factor gauges two variables relating to the voluntary or altruistic values of environmental responsibility. The third factor includes variables referring to the governmental intervention or business conformance with regulations. Consequently, we labeled them competitive-based (profitability oriented) values, altruistic-based (voluntary) values, and legitimacy-based (conformance) values, respectively.

Factor analysis was also used to explore the factor structure of the EMPs, producing two reliable factor solutions with eigenvalues >1 that accounted for
Table 2
Means, Standard Deviations, Percentage Distributions, Item–Total Correlations, Factor Loadings, and Cronbach's Alpha for the NEP Scale Items

<table>
<thead>
<tr>
<th>Item</th>
<th>Mean (SD)</th>
<th>SD</th>
<th>SWD</th>
<th>U</th>
<th>SWA</th>
<th>SA</th>
<th>Anti-NEP<sup>b</sup></th>
<th>LGP<sup>b</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>1. We are approaching the limit of the number of people the earth can support</td>
<td>3.46 (1.04)</td>
<td>4.40</td>
<td>13.90</td>
<td>26.60</td>
<td>40.50</td>
<td>14.60</td>
<td>-0.032</td>
<td>0.854</td>
</tr>
<tr>
<td>2. The balance of nature is strong enough to cope with the impacts of modern industrial nations</td>
<td>1.96 (0.72)</td>
<td>25.90</td>
<td>53.20</td>
<td>19.00</td>
<td>1.90</td>
<td>0.00</td>
<td>-0.615</td>
<td>0.080</td>
</tr>
<tr>
<td>3. The balance of nature is very delicate and easily upset</td>
<td>3.78 (0.75)</td>
<td>0.00</td>
<td>5.10</td>
<td>25.90</td>
<td>54.40</td>
<td>14.60</td>
<td>0.763</td>
<td>0.071</td>
</tr>
<tr>
<td>4. Human ingenuity will ensure that we do NOT make the earth unlivable</td>
<td>1.99 (0.80)</td>
<td>27.80</td>
<td>49.40</td>
<td>18.40</td>
<td>4.40</td>
<td>0.00</td>
<td>0.676</td>
<td>-0.059</td>
</tr>
<tr>
<td>5. The earth is like a spaceship with very little room and resources</td>
<td>3.60 (1.01)</td>
<td>3.80</td>
<td>10.80</td>
<td>23.40</td>
<td>44.90</td>
<td>17.10</td>
<td>-0.078</td>
<td>0.822</td>
</tr>
<tr>
<td>6. The so-called “ecological crises” facing humankind have been greatly exaggerated</td>
<td>1.91 (1.91)</td>
<td>27.20</td>
<td>53.80</td>
<td>19.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.663</td>
<td>-0.275</td>
</tr>
<tr>
<td>7. Plants and animals have as much right as humans to exist</td>
<td>4.26 (0.61)</td>
<td>0.00</td>
<td>0.00</td>
<td>8.90</td>
<td>55.70</td>
<td>35.40</td>
<td>-0.700</td>
<td>0.081</td>
</tr>
<tr>
<td>8. Humans were meant to rule over the rest of nature</td>
<td>1.95 (0.82)</td>
<td>33.50</td>
<td>39.90</td>
<td>24.10</td>
<td>2.50</td>
<td>0.00</td>
<td>0.769</td>
<td>-0.032</td>
</tr>
<tr>
<td>9. If things continue on their present course, we will soon experience a major ecological catastrophe</td>
<td>3.86 (0.79)</td>
<td>0.60</td>
<td>4.40</td>
<td>21.50</td>
<td>54.40</td>
<td>19.00</td>
<td>-0.666</td>
<td>0.059</td>
</tr>
<tr>
<td>10. Humans will eventually learn enough about how nature works to be able to control it</td>
<td>1.88 (0.75)</td>
<td>32.90</td>
<td>47.50</td>
<td>17.70</td>
<td>1.90</td>
<td>0.00</td>
<td>0.735</td>
<td>0.011</td>
</tr>
</tbody>
</table>

Note: NEP = new ecological paradigm; LGP = limits to growth paradigm; SA = strongly agree, SWA= somewhat agree, U = unsure, SWD = somewhat disagree, and SD = strongly disagree.

a. Agreement with the five odd-numbered items and disagreement with the five even-numbered items indicate pro-NEP responses.

b. Loadings ≥0.40 are in boldface.
Table 3
Means, Standard Deviations, Factor Loadings, and Cronbach’s Alpha for the Organizational Environmental Values Dimensions

<table>
<thead>
<tr>
<th>Item</th>
<th>Mean (SD)</th>
<th>Competitive-Based Values α = .645</th>
<th>Altruism-Based Values α = .626</th>
<th>Legitimacy-Based Values α = .60</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Compliance to environmental regulations is enough for hotels to be responsible</td>
<td>3.52 (1.24)</td>
<td>-0.191</td>
<td>-0.025</td>
<td>0.817</td>
</tr>
<tr>
<td>2. Occupancy levels always take precedence over environmental issues when making a decision</td>
<td>2.84 (1.18)</td>
<td>0.688</td>
<td>0.126</td>
<td>-0.139</td>
</tr>
<tr>
<td>3. It is better to ignore environmental issues (e.g., linen program) that could affect guests’ experiences as hotels are driven by market preferences</td>
<td>2.48 (1.26)</td>
<td>0.724</td>
<td>-0.043</td>
<td>-0.024</td>
</tr>
<tr>
<td>4. Environmental management/marketing in the hotel industry is a public relations invention to maintain cordial relations with stakeholders</td>
<td>3.11 (1.26)</td>
<td>0.671</td>
<td>-0.036</td>
<td>0.344</td>
</tr>
<tr>
<td>5. Environmental responsiveness is the right thing to do for sustainability of hotels</td>
<td>3.97 (0.76)</td>
<td>0.011</td>
<td>0.836</td>
<td>-0.112</td>
</tr>
<tr>
<td>6. Governmental intervention is what encourages hotels to be environmentally friendly</td>
<td>3.36 (1.29)</td>
<td>0.025</td>
<td>-0.092</td>
<td>0.853</td>
</tr>
<tr>
<td>7. A hotel should wait and see what competitors are benefiting before introducing environmental strategies</td>
<td>2.82 (1.16)</td>
<td>0.675</td>
<td>-0.023</td>
<td>-0.055</td>
</tr>
<tr>
<td>8. Hotels do not have the right to damage the environment just to satisfy their needs</td>
<td>4.01 (0.80)</td>
<td>0.132</td>
<td>0.834</td>
<td>-0.006</td>
</tr>
<tr>
<td>9. Cost reduction drives this hotel to implement environmental initiatives</td>
<td>3.29 (1.11)</td>
<td>0.659</td>
<td>0.084</td>
<td>-0.130</td>
</tr>
<tr>
<td>10. The sole function of hotel management/marketing is to fulfill owner/shareholders’ interests</td>
<td>3.01 (1.27)</td>
<td>0.758</td>
<td>0.023</td>
<td>0.058</td>
</tr>
</tbody>
</table>

Note: Loadings ≥0.40 are in boldface.
54.02% of the total variance: 41.75% and 12.26%, respectively. This is acceptable if not ideal, as per Child (2006). As shown in Table 4, the items with high values in the first factor, with the exception of recycling and purchasing environmentally friendly products, correspond to environmental activities concerned with planning and organizational practices. This suggests that environmental planning and organization do not constitute an independent factor and cannot be applied in isolation of other operational practices. Furthermore, the association of recycling and purchasing items, in particular, with those of environmental planning can be explained by the fact that waste management and suppliers’ evaluation are two basic requirements for hotels’ EMS standards. On the other hand, the second factor captures five variables related to water and energy conservation management suggesting that hotels might implement water and/or energy saving measures merely to control utility costs without following an EMS. Following this observation, the two factors were labeled Environmental Planning and Organization (EPO) and Environmental Operations (EO).

Table 5 shows the relationships by pairs of all 11 variables considered as controls or predictors. The Pearson test for bivariate correlations reveals a number of meaningful relationships among these predictors. Multicollinearity among factors is important, being especially among eight variables: chain affiliation, size, star rating, target markets, pro-NEP, and the three OEV factors. To avoid interpretation problems, the 11 predictors proceeded, therefore, into 3 hierarchical models. In the first model, only the control variables were entered. This was followed by the two dimensions of PEV and in the final model we added the three OEV dimensions. Given that we estimated each model for the two environmental management dimensions (dependent variables), six multiple regressions were conducted. The results from the hierarchical models are provided in Table 6.

Table 6 shows that the global fit of the explanatory model (1) was statistically significant for both environmental management dimensions (EPO and EO). The explanatory power of this model was uniformly the strongest between the three regression models, explaining 57.5% and 39.6% of variances in EPO and EO, respectively, suggesting that including these predictors in the analysis was correct. Here are a number of interesting observations on the effects of these predictors.

Chain affiliation stands out as the most valuable predictor, positively and significantly affecting the implementation of environmental management practices ($p < .01$). This might be attributed to knowledge and experience exchange among international chain affiliates, facilitating access to more information on modern environmental measures and hence their adoption. Also, international chain hotels enjoy larger economies of scale than locally managed hotels. International chains might have the tendency to impose environmental standards and policies on their local members. Increased visibility of international hotel facilities may have also attracted institutional pressures from government agencies and stakeholders to promote significant adoption of BER practices. These findings confirm our previous research (see El Dief & Font, 2010) and are also consistent with those from Western-based studies (e.g., Alvarez Gil et al., 2001; Ayuso, 2006; Bohdanowicz, 2006; Claver-Cortes et al., 2007; González & León, 2001).
Table 4
Means, Standard Deviations, Factor Loadings, and Cronbach’s Alpha for Dimensions of Environmental Management Practices

<table>
<thead>
<tr>
<th>Item</th>
<th>Mean (SD) n = 158</th>
<th>Environmental Planning and Organization $\alpha = .859$</th>
<th>Environmental Operations $\alpha = .682$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. The hotel quantifies environmental savings and costs in its annual budget</td>
<td>2.63 (1.06)</td>
<td>0.693</td>
<td>0.371</td>
</tr>
<tr>
<td>2. The hotel is subject to environmental audits at regular intervals</td>
<td>3.34 (1.08)</td>
<td>0.660</td>
<td>0.392</td>
</tr>
<tr>
<td>3. The hotel rewards its employees for developing new environmental ideas</td>
<td>3.13 (1.25)</td>
<td>0.739</td>
<td>0.064</td>
</tr>
<tr>
<td>4. The hotel conducts seminars for raising employees’ environmental awareness</td>
<td>3.40 (1.13)</td>
<td>0.682</td>
<td>0.334</td>
</tr>
<tr>
<td>5. The hotel has designated paid positions to take the responsibility of environmental issues</td>
<td>2.93 (1.12)</td>
<td>0.800</td>
<td>0.006</td>
</tr>
<tr>
<td>6. The hotel has implemented a waste management and a recycling program</td>
<td>3.58 (1.08)</td>
<td>0.641</td>
<td>0.189</td>
</tr>
<tr>
<td>7. The hotel gives priority to purchasing environmentally friendly products (biodegradable, recyclable, etc.)</td>
<td>3.62 (1.15)</td>
<td>0.661</td>
<td>0.328</td>
</tr>
<tr>
<td>8. The hotel uses energy-efficient lightings and appliances in guest rooms and public areas</td>
<td>4.23 (0.76)</td>
<td>0.250</td>
<td>0.721</td>
</tr>
<tr>
<td>9. The hotel has installed new technologies such as key card control systems in guest rooms, sensors, and timers, etc.</td>
<td>4.25 (0.81)</td>
<td>0.103</td>
<td>0.710</td>
</tr>
<tr>
<td>10. The hotel has established water conserving fixtures or retrofits (e.g., tape aerators, showerheads, etc.)</td>
<td>4.39 (0.75)</td>
<td>0.176</td>
<td>0.760</td>
</tr>
<tr>
<td>11. The hotel offers multiple night guests the option of linen/towel reuse</td>
<td>2.69 (1.64)</td>
<td>0.186</td>
<td>0.492</td>
</tr>
<tr>
<td>12. The hotel treats its wastewater and reuses it in irrigation</td>
<td>4.20 (0.97)</td>
<td>0.172</td>
<td>0.710</td>
</tr>
</tbody>
</table>

Note: Loadings ≥0.40 are in boldface.
Table 5
The Relationship Between Predictors

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Manager's tenure</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2. Manager's age</td>
<td>0.590***</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Priority markets</td>
<td>-0.144*</td>
<td>-0.084</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Size</td>
<td>-0.027</td>
<td>0.038</td>
<td>0.069</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Star rating</td>
<td>-0.013</td>
<td>0.053</td>
<td>0.170**</td>
<td>0.233***</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Chain affiliation</td>
<td>0.056</td>
<td>0.085</td>
<td>0.077</td>
<td>0.454***</td>
<td>0.465***</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. New Ecological Paradigm</td>
<td>-0.121</td>
<td>-0.131</td>
<td>0.14*</td>
<td>0.096</td>
<td>0.363***</td>
<td>0.091</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. Limits to growth paradigm</td>
<td>0.083</td>
<td>0.044</td>
<td>-0.001</td>
<td>0.167**</td>
<td>0.098</td>
<td>0.181**</td>
<td>0.162***</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Competitive-based values</td>
<td>0.015</td>
<td>0.061</td>
<td>0.089</td>
<td>0.123</td>
<td>0.336***</td>
<td>0.101</td>
<td>0.125</td>
<td>0.134*</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10. Altruistic-based values</td>
<td>0.021</td>
<td>0.039</td>
<td>0.26***</td>
<td>0.260***</td>
<td>0.529***</td>
<td>0.304***</td>
<td>0.344***</td>
<td>0.148*</td>
<td>0.204**</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>11. Legitimacy-based values</td>
<td>0.065</td>
<td>0.091</td>
<td>-0.089</td>
<td>-0.081</td>
<td>-0.191**</td>
<td>-0.027</td>
<td>-0.116</td>
<td>-0.016</td>
<td>-0.174**</td>
<td>-0.145*</td>
<td>1</td>
</tr>
</tbody>
</table>

*p < .10 (two-tailed). **p < .05 (two-tailed). ***p < .01 (two-tailed).
<table>
<thead>
<tr>
<th></th>
<th>Explanatory Model 1 (β Step 1)</th>
<th>Environmental Planning and Organization</th>
<th>Environmental Operations</th>
<th>Explanatory Model 2 (β Step 2)</th>
<th>Environmental Planning and Organization</th>
<th>Environmental Operations</th>
<th>Explanatory Model 3 (β Step 3)</th>
<th>Environmental Planning and Organization</th>
<th>Environmental Operations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age</td>
<td>-0.066</td>
<td>0.000</td>
<td></td>
<td>-0.059</td>
<td>0.024</td>
<td></td>
<td>-0.064</td>
<td>0.003</td>
<td></td>
</tr>
<tr>
<td>Manager’s tenure</td>
<td>0.061</td>
<td>0.060</td>
<td></td>
<td>0.057</td>
<td>0.050</td>
<td></td>
<td>0.035</td>
<td>0.045</td>
<td></td>
</tr>
<tr>
<td>Size</td>
<td>0.103*</td>
<td>0.170**</td>
<td></td>
<td>0.094</td>
<td>0.145**</td>
<td></td>
<td>0.048</td>
<td>0.106*</td>
<td></td>
</tr>
<tr>
<td>Star rating</td>
<td>0.068</td>
<td>0.201**</td>
<td></td>
<td>0.067</td>
<td>0.203**</td>
<td></td>
<td>0.066</td>
<td>0.242***</td>
<td></td>
</tr>
<tr>
<td>Chain affiliation</td>
<td>0.679***</td>
<td>0.411***</td>
<td></td>
<td>0.659***</td>
<td>0.344***</td>
<td></td>
<td>0.505***</td>
<td>0.175**</td>
<td></td>
</tr>
<tr>
<td>Western markets</td>
<td>0.066</td>
<td>0.061</td>
<td></td>
<td>0.064</td>
<td>0.054</td>
<td></td>
<td>0.005</td>
<td>0.022</td>
<td></td>
</tr>
<tr>
<td>New Ecological Paradigm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Limits to growth paradigm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Competitive-based values</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Altruistic-based values</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Legitimacy-based values</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R^2 at each step</td>
<td>0.575***</td>
<td>0.396***</td>
<td></td>
<td>0.581</td>
<td>0.444***</td>
<td></td>
<td>0.658***</td>
<td>0.560***</td>
<td></td>
</tr>
<tr>
<td>$Δ R^2$ at each step</td>
<td>0.575***</td>
<td>0.396***</td>
<td></td>
<td>0.006</td>
<td>0.048***</td>
<td></td>
<td>0.077***</td>
<td>0.116***</td>
<td></td>
</tr>
</tbody>
</table>

Note: βs are the standardized coefficients.

*p < .10. **p < 0.05. ***p < 0.01.
Star rating and firm size explain hotels’ adoption of EO practices. Larger hotels may find it makes good business sense to adopt ecoefficiency measures. The relationship between these two predictors and EPO was not significant, and the strong relationship between EPO and chain affiliation means adopting standardized EMS is more likely to be the result of being part of an international hotel chain than star rating or size. We also found a lack of knowledge about EMS and/or certification schemes in locally managed hotels, regardless of size or star rating. We interpreted this as potentially being the result of larger firms being less scrutinized for environmental performance, given their importance for livelihoods and job creation in developing countries.

We did not find a significant relationship between the two environmental management dimensions and manager’s age, manager’s tenure, and priority target markets (the remaining three control variables). The sample averaged 40 years old and tenure averages less than 2 years—more research is needed to explain why. Priority market (Western vs. others) correlates with environmental proactivity (see bivariate correlations, Table 5), we believe this is because of collinearity with the chain affiliation variable, and priority market could not explain a part of the variance in hotels’ EMPs, which might suggest a lack of market interest.

The second model in Table 6 incorporates as independent variables both PEV dimensions identified above: NEP and LGP. Although the explanatory power of this model was weak in both dimensions of environmental management, interestingly, beta coefficients of some control variables dropped by including PEV variables. This suggests that respondents’ PEV partly explain the variance that control variables could not. However, this was only significant in predicting the EO dimension, not EPO measures. A possible explanation for this is the inability of Egyptian hoteliers to act out of their prescribed tasks, because of being constrained by hierarchy in organizational structure. This is particularly the case when decision making is characterized by a high degree of risk and uncertainty, an observation widely reported in organizational research from Egypt (e.g., Attia, Shankarmahesh, & Singhapakdi, 1999; El Dief & Font, 2010; Parnell & Hatem, 1999; Rice, 2006, El-Sawah, Tharwat, & Rasmy, 2008). The novelty of the concept to Red Sea hotels and chief engineers’ short tenure means it is easier to start with financially visible measures (e.g., saving water) and then to move up toward a more structured EMS over time. It is also probable that environmental engineers have not examined the specific requirements of such programs carefully or they have examined them but perceived EMS benefits to be low in comparison with the cost of implementation. These interpretations make sense because nonadopters are typically domestic, smaller hotels with fewer resources.

Finally, we incorporate OEV variables in the third model. The predictive power (R^2) increased significantly ($p < .01$) and positively in both regressions, adding 7.70% and 11.6% to the total variance explained in EPO and EO dimensions, respectively. However, the values of beta coefficient indicated that EPO measures responded only to altruistic values with a confidence level of more than 99%. Interestingly, the effects of the other predicting variables, with the exception of the chain affiliation variable, endured in the EPO regression. This suggests that
applying EMS results from in-depth changes of values and belief systems of staff in these hotels, taking place only in the international chain hotels. This points at the potential influence of the more structured environmental training and higher communication standards available in international chains in fostering higher levels of environmental consciousness in affiliates.

We note the lack of a significant relationship between EPO and competitive-based values. This may imply that hoteliers’ logic of the win-win argument of environmental management may not be valid for formally structured EMSs but only for the implementation of EO measures directed at reducing costs. Our analysis reveals that the profitability orientation was the most telling in predicting the implementation of EO measures (confidence >99%). This suggests that hotel management believing in the possibilities of environmental responsibility for profitability and/or utilitarian rather than altruistic purposes would only prefer to implement environmental measures with visible financial rewards.

Legitimacy-based values appeared irrelevant as a determinant of EMPs. This might be an indicator that the Red Sea hotel industry lacks a developed environmental policy that emphasizes the implementation and monitoring of environmental compliance, similar to those found in some of the developed countries (see Hoffman, 1999; Marshall, Cordano, & Silverman, 2005). In Egypt, environmental regulation for the hotel industry is limited to environmental impact assessment at the planning permission stage and compliance is not a challenge (Shaalan, 2005). This situation may have led many hotel managers to be apathetic toward environmental issues. Thus, coercive pressures stemming from the government as proposed by institutional theory (Hoffman, 2000; Rivera, 2004) are not important here to explain hotels’ adoption of EMPs.

CONCLUSIONS

This article contributes to the organizational greening literature by examining how personal and organizational values can influence the implementation of environmental management practices, testing a model developed out of Western literature in a developing country context. The results support the influence of organizational altruism in explaining different types of environmental management practices in the absence of external institutional pressures. Such organizational orientation is more likely in international chains where environmental programs may be standardized, environmental responsibilities are designated, environmental training is considered, and environmental innovation is rewarded. This may be explained by the fact that these international chains have similar behaviors irrespective of their operational location. This can both mean that their behavior is more likely to behave as described in the Western literature, or that these hotels are more used to the rhetoric behind corporate responsibility speak—further qualitative research is needed in this respect.

The data suggest that managers’ personal values and organizational competitiveness can only explain environmental management practices with more visible financial returns. The lack of formalized environmental structures and/or
empowerment in local hotels appear to have established a context of “moral frustration” (Hemingway, 2005) for environmentally interested managers who may feel obliged to suppress their ecocentric beliefs and prioritize the economic interests of the hotel. The need to strengthen ethical support for environmental management in these hotels is, thus, a key. Policies and educational programs that foster the capability of hoteliers to use nonfinancial criteria as an element of their decision-making process may provide a contribution.

This study illustrates how coercive pressures through legislation are currently not relevant in Egypt. The study reflects fairly good intentions, at least at the individual level of managers, regarding future development of environmental sustainability as the majority of respondents expressed strong endorsement of the NEP. This data set suggests that it is the lack of appropriate frameworks that stands between good intentions and actual behavior—clearly an area deserving further research attention. The novelty of the concept and the lack of knowledge, particularly in domestic firms, may make managers unaware of the potential benefits which are now well rehearsed in international hospitality firms and embedded in their corporate responsibility teams. Accordingly, policy makers need to be aware that education, training, and awareness raising programs seem to be the most appropriate avenue at this stage, whereas management should consider the much more complex issue of staff empowerment to allow personal environmental values to permeate in the workplace. Hoteliers and, more important, investors need to be made aware of the potential competitive opportunities that they are currently missing by not engaging in proactive environmental management practices. Since the majority of local hotels understand the ecoefficiency benefits, programs need to be more comprehensive and discuss the benefits of further issues such as EMSs. Our ambition with this study is to have developed a transferable quantitative scale that can be replicated in other locations and longitudinally in Egypt both by ourselves and other academics, and a data set we can further interpret through qualitative research.

REFERENCES

Submitted Month November 30, 2009
Accepted July 13, 2010
Refereed Anonymously

Mohammed El Dief is a lecturer at the Faculty of Tourism and Hospitality Management at Helwan University, Egypt, where he is engaged in research on the environmental management and marketing of Middle Eastern hotels. He has a PhD in responsible tourism from Leeds Metropolitan University. **Xavier Font** (e-mail: x.font@leedsmet.ac.uk) is the Director of Studies at the International Centre for Responsible Tourism, Leeds Metropolitan University. His research focuses on green marketing, eco-labeling and sustainable supply chain management.